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ABSTRACT
Preserving privacy of users is a key requirement of web-scale analyt-

ics and reporting applications, and has witnessed a renewed focus

in light of recent data breaches and new regulations such as GDPR.

We focus on the problem of computing robust, reliable analytics in a

privacy-preserving manner, while satisfying product requirements.

We present PriPeARL, a framework for privacy-preserving analyt-

ics and reporting, inspired by di�erential privacy. We describe the

overall design and architecture, and the key modeling components,

focusing on the unique challenges associated with privacy, cover-

age, utility, and consistency. We perform an experimental study

in the context of ads analytics and reporting at LinkedIn, thereby

demonstrating the tradeo�s between privacy and utility needs, and

the applicability of privacy-preserving mechanisms to real-world

data. We also highlight the lessons learned from the production

deployment of our system at LinkedIn.

1 INTRODUCTION

Preserving privacy of users is a key requirement of web-scale

data mining applications and systems such as web search, recom-

mender systems, crowdsourced platforms, and analytics applica-

tions, and has witnessed a renewed focus in light of recent data

breaches and new regulations such as GDPR [35]. As part of their

products, online social media and web platforms typically provide

di�erent types of analytics and reporting to their users. For exam-

ple, LinkedIn provides several analytics and reporting applications

for its members as well as customers, such as ad analytics (key

campaign performance metrics along di�erent demographic dimen-

sions), content analytics (aggregated demographics of members

that viewed a content creator’s article or post), and pro�le view

statistics (statistics of who viewed a member’s pro�le, aggregated

along dimensions such as profession and industry). For such analyt-

ics applications, it is essential to preserve the privacy of members,

since member actions could be considered as sensitive information.

Speci�cally, we want to ensure that any one individual’s action (e.g.,

click on an article or an ad) may not be inferred by observing the

results of the analytics system. At the same time, we need to take

into consideration various practical requirements for the associated

product to be viable and usable.

In this paper, we investigate the problem of computing robust,

reliable analytics in a privacy-preserving manner, while addressing

product requirements such as coverage, utility, and consistency. We

present PriPeARL, a framework for privacy-preserving analytics
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and reporting. We highlight the unique challenges associated with

privacy, coverage, utility, and consistency while designing and im-

plementing our system (§2), and describe the modeling components

(§3) and the system architecture (§4) to address these requirements.

Our approach to preserving member privacy makes use of ran-

dom noise addition inspired by di�erential privacy, wherein the

underlying intuition is that the addition of a small amount of appro-

priate noise makes it harder for an attacker to reliably infer whether

any speci�c member performed an action or not. Our system in-

corporates techniques such as deterministic pseudorandom noise

generation to address certain limitations of standard di�erential

privacy and performs post-processing to achieve data consistency.

We then empirically investigate the tradeo�s between privacy and

utility needs using a web-scale dataset associated with LinkedIn

Ad Analytics and Reporting platform (§5). We also highlight the

lessons learned in practice from the production deployment of our

system at LinkedIn (§6). We �nally discuss related work (§7) as well

as conclusion and future work (§8).

2 BACKGROUND AND PROBLEM SETTING
We �rst provide a brief overview of analytics and reporting systems

at LinkedIn, followed by a discussion of the key privacy and product

requirements for such systems.

2.1 Analytics and Reporting at LinkedIn
Internet companies such as LinkedIn make use of a wide range of

analytics and reporting systems as part of various product o�erings.

Examples include ad campaign analytics platform for advertisers,

content analytics platform for content creators, and pro�le view

analytics platform for members. The goal of these platforms is to

present the performance in terms of member activity on the items

(e.g., ads / articles and posts / member pro�le respectively), which

can provide valuable insights for the platform consumers. For ex-

ample, an advertiser could determine the e�ectiveness of an ad

campaign across members from di�erent professions, functions,

companies, locations, and so on; a content creator could learn about

the aggregated demographics of members that viewed her article

or post; a member can �nd out professions, functions, companies,

locations, etc. that correspond to the largest sources of her pro�le

views. The platforms are made available typically as a web interface,

displaying the relevant statistics (e.g., impressions, clicks, shares,

conversions, and/or pro�le views, along with demographic break-

downs) over time, and sometimes also through corresponding APIs

(e.g., ad analytics API). Figure 3 shows a screenshot of LinkedIn’s

ad analytics and reporting platform (discussed in §5.1).

A key characteristic of these platforms is that they admit only a

small number of predetermined query types as part of their user
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interface and associated APIs, unlike the standard statistical data-

base setting that allows arbitrary aggregation queries to be posed.

In particular, our analytics platforms allow querying for the num-

ber of member actions, for a speci�ed time period, together with

the top demographic breakdowns. We can abstractly represent the

underlying database query form as follows.

• “SELECT COUNT(*) FROM table(statType, entity) WHERE

timeStamp ≥ startTime AND timeStamp ≤ endTime AND

dattr = dval ”

In the above query, table(statType, entity) abstractly denotes a

table in which each row corresponds to a member action (event) of

statistics type, statType for entity (e.g., clicks on a given ad), dattr
the demographic attribute (e.g., title), and dval the desired value of

the demographic attribute (e.g., “Senior Director”). In practice, these

events could be preprocessed and stored in a partially aggregated

form so that each row in the table corresponds to the the number of

actions (events) for a (statType, entity,dattr ,dval , the most granular

time range) combination, and the query computes the sum of the

number of member actions satisfying conditions on the desired

time range and the demographic attribute-value pair.

2.2 Privacy Requirements
We next discuss the requirement for preserving the privacy of

LinkedIn members. Our goal is to ensure that an attacker cannot

infer whether a member performed an action (e.g., click on an arti-

cle or an ad) by observing the results shown by the analytics and

reporting system, possibly over time. We assume that the attacker

may have knowledge of attributes associated with the target mem-

ber (e.g., obtained from this member’s LinkedIn pro�le) as well as

knowledge of all other members that performed similar action (e.g.,

by creating fake accounts that the attacker has then control over).

At �rst, it may seem that the above assumptions are strong,

and the aggregate analytics may not reveal information about any

member’s action. However, we motivate the need for such privacy

requirements by illustrating potential attacks in the context of ad

analytics. Consider a campaign targeted to “Senior directors in

US, who studied at Cornell.” As such a campaign is likely to match

several thousands of members, it will satisfy any minimum targeting

threshold and hence will be deemed valid. However, this criterion

may match exactly one member within a given company (whose

identity can be determined from the member’s LinkedIn pro�le or

by performing search for these criteria), and hence the company-

level demographic breakdowns of ad clicks could reveal whether

this member clicked on the ad or not. A common approach to

reducing the risk of such attacks is to use a (deterministic) minimum

threshold prior to showing the statistics. However, given any �xed

minimum threshold k , the attacker can create k − 1 or more fake

accounts that match the same criteria as the target member, and

have these accounts click on the ad so that the attacker can precisely

determine whether the member clicked on the ad from the company-

level ad click count. A larger �xed threshold would increase the

e�ort involved in this attack, but does not prevent the attack itself.

Similarly, we would like to provide incremental privacy protec-

tion, that is, protect against attacks based on incremental obser-

vations over time. We give an example to demonstrate how, by

observing the reported ad analytics over time, a malicious adver-

tiser may be able to infer the identity of a member that clicked on

the ad. Consider an ad campaign targeted to “all professionals in

US with skills, ‘leadership’ and ‘management’ and at least 15 years

of experience.” Suppose that this ad receives a large number of

clicks from leadership professionals across companies initially, and

afterwards, on a subsequent day, receives just one click causing the

ad click breakdowns for ‘title = CEO’ and ‘company = LinkedIn’ to

be incremented by one each. By comparing these reported counts

on adjacent days, the advertiser can then conclude that LinkedIn’s

CEO clicked on the ad.

The above attacks motivate the need for applying rigorous tech-

niques to preserve member privacy in analytics applications, and

thereby not reveal exact aggregate counts. However, we may still

desire utility and data consistency, which we discuss next.

2.3 Key Product Desiderata
2.3.1 Coverage and Utility. It is desirable for the aggregate sta-

tistics to be available and reasonably accurate for as many action

types, entities, demographic attribute/value combinations, and time

ranges as possible for the analytics and reporting applications to

be viable and useful.

2.3.2 Data Consistency. We next discuss the desirable properties

for an analytics platform with respect to di�erent aspects of data

consistency for the end user, especially since the platform may not

be able to display true counts due to privacy requirements. We

note that some of these properties may not be applicable in certain

application settings, and further, we may choose to either partially

or fully sacri�ce certain consistency properties either to achieve

better privacy and/or utility. We discuss such design choices in §3,

§5, and §6.

Consistency for repeated queries (C1): The reported answer should

not change when the same query is repeated (assuming that the

true answer has not changed). For example, the reported number

of clicks on a given article on a �xed day in the past should remain

the same when queried subsequently. We treat this property as an

essential one.

Consistency over time (C2): The combined action counts should

not decrease over time. For example, the reported total number of

clicks on an article by members satisfying a given predicate at time

t1 should be at most that at time t2 if t1 < t2.

Consistency between total and breakdowns (C3): The reported

total action counts should not be less than the sum of the reported

breakdown counts. For example, the displayed total number of

clicks on an article cannot be less than the sum of clicks attributed

to members from di�erent companies. We do not require an equality

check since our applications typically report only the top few largest

breakdown counts as these provide the most valuable insights about

the members engaging with the product.

Consistency across entity hierarchy (C4): When there is a hierar-

chy associated with the entities, the total action counts for a parent

entity should be equal to the sum of the action counts over the

children entities. For example, di�erent ads could be part of the

same campaign, di�erent campaigns could be part of a campaign

group, and several campaign groups could be part of an advertiser’s

account.
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Consistency across action hierarchy (C5): When there is a hierar-

chy associated with actions such that a parent action is a prerequi-

site for a child action (e.g., an article would need to be impressed

(shown) to the member, before getting clicked), the count for the

parent action should not be less than the count for the child action

(e.g., the number of impressions cannot be less than the number of

clicks).

Consistency for top k queries (C6): The top k results reported

for di�erent choices of k should be consistent with each other. For

example, the top 10 titles and the top 5 titles respectively of members

that clicked on an article should agree on the �rst 5 results.

2.4 Problem Statement
Our problem can thus be stated as follows: How do we compute
robust, reliable analytics in a privacy-preserving manner, while ad-
dressing the product desiderata such as coverage, utility, and consis-
tency? How do we design the analytics computation system to meet
the needs of LinkedIn products? We address these questions in §3

and §4 respectively.

3 PRIVACY MODEL AND ALGORITHMS
We present our model and detailed algorithm for achieving privacy

protection in an analytics and reporting setting. Our approach mod-

i�es the reported aggregate counts using a random noise addition

mechanism, inspired by di�erential privacy [10, 11]. Di�erential

privacy is a formal guarantee for preserving the privacy of any indi-

vidual when releasing aggregate statistical information about a set

of people. In a nutshell, the di�erential privacy de�nition requires

that the probability distribution of the released results be nearly

the same irrespective of whether an individual’s data is included as

part of the dataset. As a result, upon seeing a published statistic,

an attacker would gain very little additional knowledge about any

speci�c individual.

De�nition 3.1. [11] A randomized mappingK satis�es ϵ-di�erential

privacy if for all pairs of datasets (D,D ′) di�ering in at most one

row, and all S ⊆ Ranдe(K),
Pr [K(D) ∈ S] ≤ eϵ · Pr [K(D ′) ∈ S],

where the probability is over the coin �ips of K .

Formally, this guarantee is achieved by adding appropriate noise

(e.g., from Laplace distribution) to the true answer of a statistical

query function (e.g., the number of members that clicked on an

article, or the histogram of titles of members that clicked on an

article), and releasing the noisy answer. The magnitude of the noise

to be added depends on the L1 sensitivity of the query (namely, the

upper bound on the extent to which the query output can change,

e.g., when a member is added to or removed from the dataset), and

the desired level of privacy guarantee (ϵ).

De�nition 3.2. [11] The L1 sensitivity of a query function, f :

D → Rd is de�ned as ∆(f ) = maxD,D′ | | f (D) − f (D ′)| |1 for all

pairs of datasets (D,D ′) di�ering in at most one row.

Theorem 3.3. [11] Given a query function f : D → Rd , the ran-
domized mechanismK that adds noise drawn independently from the
Laplace distribution with parameter ∆(f )

ϵ to each of the d dimensions
of f (D) satis�es ϵ-di�erential privacy.

For our application setting, we adopt event-level di�erential pri-

vacy [12], in which the privacy goal is to hide the presence or

absence of a single event, that is, any one action of any member.

Under this notion, the sensitivity for the query shown in §2.1 equals

1.

We next describe our approach for adding appropriate random

noise to demographic level analytics, and for performing post-

processing to achieve di�erent levels of consistency. We �rst present

an algorithm for generating pseudorandom rounded noise from

Laplace distribution for a given query (Algorithm 1), followed by an

algorithm for computing noisy count for certain canonical queries

(Algorithm 2), and �nally the main algorithm for privacy-preserving

analytics computation (Algorithm 3), which builds on the �rst two

algorithms.

3.1 Pseudorandom Laplace Noise Generation
A key limitation with the standard di�erential privacy approach is

that the random noise can be removed, by issuing the same query

many times, and computing the average of the answers. Due to this

reason and also for ensuring consistency of the answer when the

same query is repeated (e.g., the advertiser returning to check the

analytics dashboard with the same �ltering criteria), we chose to

use a deterministic, pseudorandom noise generation algorithm. The

idea is that the noise value chosen for a query is �xed to that query,

or the same noise is assigned when the same query is repeated.

Given the statistical query, the desired privacy parameter, and

the �xed secret, we generate a (�xed) pseudorandom rounded noise

from the appropriate Laplace distribution using Algorithm 1. First,

the secret and the query parameters are given as input to the deter-

ministic function, GeneratePseudorandFrac, which returns a pseu-

dorandom fraction between 0 and 1. Treating this obtained fraction

as sampled from the uniform distribution on (0, 1), we apply the

inverse cumulative distribution function (cdf) for the appropriate

Laplace distribution to get the pseudorandom noise. Finally, we

round the noise to the nearest integer since it is desirable for the

reported noisy counts to be integers.

The function, GeneratePseudorandFrac, can be implemented in

several ways. One approach would be to concatenate the query

parameters and the �xed secret, then apply a cryptographically

secure hash function (e.g., SHA-256), and use the hash value as

the seed to a pseudorandom number generator that gives a pseu-

dorandom fraction uniformly distributed in between 0 and 1. To

protect against length extension attack and potential collisions, it

may be desirable to avoid keyed hashing and instead use a crypto-

graphically secure and unbiased hash function such as HMAC with

SHA-256 (HMAC-SHA256) [7]. This factor needs to be weighed

against the computational e�ciency requirements, which could

favor simpler implementations such as applying a more e�cient

hash function and scaling the hash value to (0, 1) range, treating

the hash value to be a uniformly distributed hexadecimal string

in its target range. Note that the �xed secret is used so that an

attacker armed with the knowledge of the algorithm underlying

GeneratePseudorandFrac as well as the query parameters would not

be able to compute the noise value.
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Algorithm 1 Pseudorandom Laplace Noise Generation Algorithm,

GeneratePseudorandomLaplaceNoise

1: Inputs: Fixed secret, s; Statistics type, statType; Entity Id, e;

Demographic (attribute, value) pair, (dattr ,dval ); Atomic time

range, Ta ; Privacy parameter, ϵ .

2: Output: Corresponding pseudorandom Laplace noise value.

3: p := GeneratePseudorandFrac(s, statType, e,dattr ,dval ,Ta )
4: laplaceRandVar := −1ϵ sgn(p − 0.5) ln(1 − 2|p − 0.5|)
5: return round(laplaceRandVar )

3.2 Canonical Noisy Count Computation
We compute the noisy count for a canonical statistical query us-

ing Algorithm 2. A canonical query takes the form shown in §2.1,

wherein the startTime and the endTime are constrained to map

to an atomic time range (discussed in §3.3). The algorithm com-

putes the true answer for the query by probing the underlying

database, and then adds a �xed, rounded, pseudorandom Laplace

noise by invoking the function, GeneratePseudorandFrac (§3.1). In

case the noisy answer is negative, a count of zero is reported in-

stead to ensure consistency over time. In this manner, we ensure

that the combined action counts do not decrease over time since a

query over a longer time range could then be broken into canonical

queries, whose results could be summed up.

Algorithm 2 Canonical Noisy Count Computation Algorithm,

ComputeCanonicalNoisyCount

1: Inputs: Fixed secret, s; Statistics type, statType; Entity Id, e;

Demographic (attribute, value) pair, (dattr ,dval ); Atomic time

range, Ta ; Privacy parameter, ϵ .

2: Output: Noisy demographic level statistics value for the canon-

ical query.

3: Compute true count, trueCount of statType for entity e over

the atomic time rangeTa for the demographic (attribute, value)

pair, (dattr ,dval ).
4: noise := GeneratePseudorandomLaplaceNoise(s, statType, e,
(dattr ,dval ),Ta , ϵ)

5: return max(trueCount + noise, 0)

3.3 Privacy-preserving Analytics Computation
We next present our main algorithm for computing privacy-preserving

analytics in Algorithm 3. This algorithm computes the answer to

an arbitrary statistical query of the form shown in §2.1, achieving

a balance between privacy, consistency, and utility needs.

We �rst discuss the special handling for the condition stated in

line 3 of Algorithm 3. If the entity is at a broader level and consists

of very few children entities (e.g., an ad campaign id that corre-

sponds to just 1 or 2 ads), we would like to provide consistency

across entity hierarchy (C4). The underlying rationale is that dis-

crepancy between the reported statistics for parent and children

entities would cause a poor experience in extreme cases of the

parent containing just one child or very few children. For instance,

an advertiser who creates a campaign with just one ad may even

perceive such discrepancy as a bug. However, this di�erence be-

comes less pertinent as the number of children increases. Hence,

our algorithm recursively sums up the noisy counts for the children

entities when the number of children is at most the entity hierar-

chy consistency parameter, l (given as input). As l increases, we

satisfy C4 to a greater extent, although at the cost of reduced utility

(noise with larger variance is added) and increased latency (due to

a fan-out of recursive calls, possibly across multiple levels in the

entity hierarchy).

If the condition discussed above is not satis�ed, the algorithm

�rst partitions the input time range into a minimal set, ∆ of atomic
time ranges, obtains the noisy counts for each time range in ∆ using

Algorithm 2, and computes their sum (lines 6-7). Given a �xed

hierarchy of time ranges, we de�ne an atomic time range to be a

range that exactly maps to some level in the hierarchy. For example,

let the hierarchy be speci�ed as 3-hour epochs beginning at 12am,

3am, 6am, . . . ← day← month← quarter← year. Then, using

M/D HH:MM notation and assuming the same year, (1/1 15:00, 1/1

18:00), (1/1 00:00, 1/2 00:00), and (1/1 00:00, 4/1 00:00) are examples

of valid atomic time ranges, while (1/1 15:00, 1/1 21:00), (1/1 00:00,

1/3 00:00), and (3/31 21:00, 8/2 03:00) are not. The range, (3/31 21:00,

8/2 03:00) can be minimally partitioned into the following: (3/31

21:00, 4/1 00:00) [3-hour epoch], (4/1 00:00, 7/1 00:00) [quarter], (7/1

00:00, 8/1 00:00) [month], (8/1 00:00, 8/2 00:00) [day], and (8/2 00:00,

8/2 03:00) [3-hour epoch].

Algorithm 3 Privacy-preserving Analytics Computation Algo-

rithm, ComputeNoisyCount

1: Inputs: Fixed secret, s; Statistics type, statType; Entity Id, e;

Demographic (attribute, value) pair, (dattr ,dval ); Time range,

T ; Privacy parameter, ϵ ; Minimum threshold, τ ; Entity hierar-

chy consistency parameter, l ; Hierarchy of time ranges,Ht ime .

2: Output: Noisy demographic level statistics value.

3: if entity e is at a broader level, and corresponds to a set Ce of

at most l children entities then
4: return

∑
entity, f ∈Ce ComputeNoisyCount(s, statType, f ,

(dattr ,dval ),T , ϵ,τ , l ,Ht ime )
5: else
6: PartitionT into a minimal set ∆ of atomic time ranges based

on the time range hierarchyHt ime .

7: noisyCount :=
∑
Ta ∈∆ComputeCanonicalNoisyCount(s,

statType, e, (dattr ,dval ),Ta , ϵ)
8: if noisyCount < τ then
9: noisyCount := 0

10: return noisyCount

The above partition-based approach is chosen for the following

reasons. First, it provides better utility for longer time range queries

(by adding noise with smaller variance) while partially sacri�cing

consistency over time (C2), as discussed more in §6. Second, it

helps with privacy guarantees by bounding the number of time

range queries involving a given member action event. For a given

demographic attribute/value predicate and entity, each event would

only be part of at most as many queries as levels in the time range

hierarchy. In this context, the partitioning of the time range into a

minimal set of atomic time ranges can be thought of as analogous

to the binary counting mechanism proposed in [8]. Finally, our
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partitioning approach protects against the time range split-based

averaging privacy attack in which an attacker could average out the

noise for a given time range query by splitting the time range into

two halves at di�erent intermediate points, obtaining the sum of

the noisy counts for each such pair of queries, and then averaging

these sums to reliably estimate the true count for the original time

range query (this is similar to the split averaging attack in [17]).

Before returning the result, we apply a minimum threshold based

post-processing step: if the noisy count is below the given minimum

threshold parameter, τ , we report a count of zero instead (lines 8-9).

As discussed in §6, we suppress small counts as these may not have

su�cient validity. We can achieve a balance between privacy, valid-

ity, and product coverage needs by varying the privacy parameter,

ϵ and the threshold parameter, τ : If stronger privacy is desired,

we could choose a smaller ϵ , and thereby add noise with a larger

variance, due to which small counts may have lesser validity. We

could then opt to suppress them using a larger τ , thereby reducing

product coverage (fewer demographic breakdowns).

We can derive the e�ective privacy guarantee assuming that

noisy answers to every possible canonical query is published. Al-

gorithm 3 can then be viewed as post-processing this published

dataset, which does not incur further di�erential privacy loss. De-

note the number of demographic attributes of interest by nattr ,

the number of levels in the time range hierarchy by nt ime , and

the number of levels in the entity hierarchy by nent . Each mem-

ber action (e.g., a member clicking on an ad) contributes to at

most nattr · nt ime · nent canonical queries, and hence the overall

event-level di�erential privacy loss can be shown to be bounded

by nattr · nt ime · nent · ϵ using composition theorem [13]. Note

that such a theoretical guarantee is under worst case assumptions,

and may not be meaningful in practice (e.g., as large as 36 for six

demographic attributes (nattr = 6), three time range levels of 3-

hour epoch← day← month (nt ime = 3), and two entity levels

(e.g., campaign and account, nent = 2) with ϵ = 1). In addition,

this guarantee is for event-level, and not for user-level di�erential

privacy.

3.4 Discussion of Consistency Checks
Depending on the speci�c analytics or reporting application, we

may apply post-processing steps to ensure consistency, and other

algorithmic modi�cations.

Consistency for repeated queries (C1): is always ensured due to

the application of pseudorandom noise.

Consistency over time (C2): The thresholding step in Algorithm 2

is performed towards achieving C2, although C2 may be violated

when the time range partitioning proceeds to a broader atomic time

range in the hierarchy (e.g., the addition of the last day of March

could introduce a quarter in the place of months/days, causing

potential violation of C2).

Consistency between total and breakdowns (C3): In many practical

analytics settings, there would be a long tail of breakdowns not

captured by the top few values that are displayed in the application.

Consequently, the sum of the top few breakdown values is typically

considerably less than the total count, which is likely to be preserved

even with noise addition. Further, in certain cases, a member could

be associated with multiple values for the same attribute (e.g., a

Figure 1: Privacy-preserving Analytics System Architecture

member with the job title, ‘Founder and CEO’ could belong to both

‘Founder’ and ‘CXO’ seniority levels), and hence C3 may not hold

even for true counts.

Consistency across entity hierarchy (C4): As discussed in §3.3, C4

is partially satis�ed.

Consistency across action hierarchy (C5): We chose to not focus on

C5 for two reasons: (1) As the count for a parent action is typically

at least an order of magnitude times the count for a child action

(e.g., far more impressions than clicks), noise addition is less likely

to have an e�ect on C5. (2) Due to possible time delays between

parent and child actions (e.g., a conversion could happen a few

days after an ad click), it is possible for C5 to not hold for a given

reporting period.

Consistency for top k queries (C6): If we compute the entire his-

togram of counts for a given attribute, C6 would be satis�ed since

we would be using the same ranked list of all values based on the

noisy counts. However, when the number of possible values is large

(e.g., there are hundreds of thousands of companies and over 25K

titles), computing the entire noisy histogram could be computation-

ally expensive. One potential heuristic is to obtain the top kmax
values using true counts (thereby deviating from di�erential pri-

vacy guarantees) for a su�ciently large kmax , and then reorder

after adding noise, thereby satisfying C6 for all k ≤ kmax .

4 PRIVACY-PRESERVING ANALYTICS
SYSTEM DESIGN AND ARCHITECTURE

We describe the overall design and architecture of the privacy-

preserving analytics computation system deployed as part of LinkedIn

products. Our system consists of an online component that provides

an interactive interface (or API) for presenting di�erent types of

analytics about member actions, and an o�ine/nearline component

for generating the necessary tables containing the granular mem-

ber actions (events). Figure 1 presents the key components of our

system.

Analytics Computation Work�ows: The tables needed for com-

puting di�erent analytics about member actions are stored as part

of LinkedIn’s Pinot system. Pinot is a realtime distributed OLAP

datastore, designed to deliver realtime analytics with low latency

in a scalable manner [29]. Two work�ows are set up to process raw

tracking data (in the form of various Kafka [26] events generated

from the member facing application, such as impressions as well

as actions including clicks and conversions) and compute partially

aggregated analytics, which are combined and ingested into the

Pinot system. The �rst work�ow is run daily in an o�ine fashion
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to compute the analytics for the previous day and persist to the

datastore. The second work�ow is run every few hours in an ‘on-

line’ fashion to compute intra-day incremental changes. The data

pushed to Pinot contains several key �elds including the granular

time range, entity (and its hierarchy, if applicable), demographic

attribute and value, and impression counts and di�erent types of

action counts. This data is �ne-grained, and is aggregated corre-

sponding to the analytics request arising from the web interface or

the API.

Online System for Presenting Analytics: Our online system uses a

service oriented architecture for retrieving and presenting privacy-

preserving analytics about member actions corresponding to the

request from the user facing product (web interface) or API. First,

this request is issued to the ‘Query Interface’ component (step

1), which processes and transforms the request into underlying

database queries, which are then passed to the ‘Privacy Mechanism’

component (step 2). This component obtains the true answers to

these queries by probing the Pinot system (steps 3a & 4a), generates

the appropriate noise (steps 3b & 4b), performs post-processing

consistency checks following Algorithm 3, and returns the set of

noisy counts (step 5), which are presented to the calling service

(step 6).

5 EMPIRICAL EVALUATION
We next present an empirical evaluation of our system, PriPeARL,

for computing privacy-preserving analytics for the LinkedIn Ad

Analytics & Reporting platform.

5.1 LinkedIn Ad Targeting & Analytics
Overview

We �rst give an overview of ad targeting and analytics at LinkedIn,

which sets the context for our experiments.

AdTargeting. LinkedIn Marketing Solutions (LMS) is a platform

for advertisers to create ad campaigns targeting their audiences.

Figure 2 shows a screenshot of the ad campaign targeting interface.

An advertiser can create an account on LMS, setup a campaign and

then select the audience they want to reach. There can be multiple

ads (‘creatives’) under the same campaign. To allow for �exible and

e�ective ad targeting, LMS provides several criteria to match the

audience, such as location, company size, industry, job title, and

school.

Ad Analytics. After setting up a campaign with one or more

ads, the advertiser, or account owner, can monitor the performance

of the campaign over di�erent time periods by using the LMS

Ad Analytics & Reporting platform. The common key metrics re-

ported include impressions, clicks, conversions, and amount spent,

as shown in Figure 3. Besides viewing these metrics in aggregate

for the whole campaign, the advertiser can also break them down

by certain dimensions such as Job Title, Job Seniority, Function, In-

dustry, Company, Company Size, and Location. This o�ers insights

on the most engaged audience segments, and hence is valuable

for the advertiser to understand their audience and optimize their

targeting.

We deployed our privacy-preserving analytics computation sys-

tem as part of LMS to prevent potential privacy attacks (§2.2) while

continuing to provide valuable insights to advertisers.

Figure 2: Ad campaign and audience targeting

Figure 3: Ad analytics

5.2 Experimental Setup
We performed our experiments using ad analytics data from De-

cember 2017. This data contains key �elds such as the granular

time range, account id, campaign id, creative (ad) id, demographic

attribute and value, impression counts, click counts, and conver-

sion counts. As discussed in §4, this data is aggregated based on

the analytics request and presented to the advertisers. The report-

ing platform o�ers both the total counts and various demographic

breakdowns of the metrics. Since the total counts for metrics such

as clicks and conversions can be accurately tracked by the adver-

tisers on their site, we chose to report the true total counts, but

add noise only to the demographic breakdowns. Speci�cally, we

focus on queries for computing the number of impressions and

the number of clicks for each (account, campaign, demographic

category, demographic value) combination present in the dataset.

We �rst examine some statistics of the input data.

• The daily input data has tens of millions of records on aver-

age, corresponding to several tens of thousands of accounts and

several hundreds of thousands of ads (creatives).

• Some demographic breakdowns are more granular than the oth-

ers. For example, there are hundreds of thousands of possible

values for Company, over 25K values for the (standardized) Job

6



(a) True impression and click distribution.
Vertical lines show the means.

(b) Absolute and signed errors with vary-
ing epsilon (ϵ )

(c) Distributions of added noise (ϵ =

1;minthreshold, τ = 0)

(d) Absolute error with varying min
threshold

(e) Signed error with varying min thresh-
old

(f) Jaccard distance for impression top-n
queries

Figure 4: Performance evaluation with ad analytics data

Title, but only about 10 possible values for Company Size and

Job Seniority. As a result, the true counts for queries tend to vary

widely across categories, e.g., impression and click counts for a

speci�c Title are generally much lower than those for a Seniority

level.

• Figure 4a shows the true distributions of daily impression and

click counts for all queries returning non-zero counts. As can

be seen, the distributions are long-tailed, with small medians

of 1 or 2. This is because many of the demographic attribute

values are very �ne grained, with relatively less engagement.

Note that in our application, we report only the top-10 values

for each demographic attribute, so that most of the attribute

values with small true counts are not surfaced to the end users.

However, since these distributions resemble many other real-

world distributions, we use them in their entirety to evaluate the

performance of our system.

5.3 Experiments
We studied the performance of our system on ad analytics queries

with di�erent choices of the privacy parameter, ϵ (Expt. 1) and

the minimum threshold parameter for reporting, τ (Expt. 2). Then,

we investigated the e�ect of the privacy mechanism on the top-

n queries. For the �rst two experiments, we measured both the

absolute error, Errabs = |noisy_count −true_count |, and the signed

error, Errsдn = (noisy_count − true_count). The average absolute

error is a measure of the overall accuracy and can be used to evaluate

the utility, while the average signed error indicates how biased the

reported values are (signed error = 0 means no bias). Note that the

minimum threshold, τ is set to 0 by default.

Expt. 1: Tradeo� between privacy and utility. In this exper-

iment, we varied the privacy parameter ϵ from 0.1 to 5, for impres-

sion and click queries. Figure 4b shows the average absolute and

signed errors vs. ϵ . As expected, we observed a tradeo� between

privacy and utility, with higher ϵ leading to less accurate results

for both types of queries. With ϵ ≥ 1, the average absolute errors

are less than 1. While the average signed error is indeed less than

the average absolute error as expected, we also observe that the

average signed error is positive, due to the e�ect of setting negative

noisy counts to 0 (so that we do not return negative counts). The

average signed errors reduce to almost 0 when ϵ ≥ 1 because the

added noise then has lower variance and hence is less likely to lead

to a negative noisy count.

We veri�ed this behavior by plotting the distribution of the

absolute error and the signed error for impressions with ϵ = 1

and τ = 0, as shown in Figure 4c. We can see that the variance

is small for both types of errors – ∼95% of queries have errors

with magnitude at most 2. It is interesting to see the e�ect of the

minimum threshold on both errors. Note that if the noise added is
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≥ −1 then the noisy count is non-negative (i.e., no need to set to

0). For the absolute error, the mode is 1, instead of 0, because for

queries with true count of 1 (the most prevalent) and noise added

< −1, the noisy count is set to 0, resulting in an absolute error

of 1. For the signed error, setting to 0 happens when noise = −2
and true count = 1, which e�ectively changes the signed error

from −2 to −1. Similarly, when noise = −3 and true count = 1, the

reported value is 0, e�ectively changing the signed error from −3
to −1. Overall there is a “shift” of signed error of -2 or less, towards

the right-hand side, causing the noisy counts to have a small but

positive bias – the average per-query signed error in this case is

0.07.

Expt. 2: Varying minimum threshold. We studied the e�ect

of varying minimum threshold τ in the range from 0 to 10. Note

that the value of τ should be decided based on the business need in

terms of the desired tradeo� between coverage and validity. While

it makes sense to only report non-negative counts, in some cases, it

can be desirable to report values over a certain positive threshold.

Noisy counts with small magnitude have a low signal to noise ratio,

and hence can cause the user to draw conclusions without su�cient

validity. Note that τ = 0 is e�ectively the same as τ = 1, since the

minimum positive reporting value is 1 and the rest is suppressed to

0.

We considered three values of ϵ ∈ {0.1, 0.5, 1} and computed

the average absolute and signed errors for impression queries for

di�erent choices of τ (shown in Figures 4d and 4e respectively).

As τ is increased, the absolute errors are less sensitive for small ϵ
(0.1), but vary signi�cantly for large ϵ (1). A possible explanation is

that when ϵ = 0.1, the magnitude of the added noise is comparable

to or larger than τ in the experiment range so that the e�ect of

thresholding is masked by the noise. On the other hand, for large ϵ ,

the noise is small, and a large minimum threshold τ could result in

many small true counts (i.e., less than τ ) to be suppressed to 0 since

their noisy counts are likely to be less than τ . The signed errors

have the trend of decreasing as τ increases (Figure 4e). This is due

to the e�ect of suppression to 0 for most of the true counts (which

mostly belong to the range [1,10]). These signed errors indicate the

extent to which the reported counts are biased (0 means no bias). If

unbiased results are desired, these results suggest setting τ to 0 or

1 for ϵ = 1, to about 3 for ϵ = 0.5, and to even larger than 10 for

ϵ = 0.1.

Expt. 3: Evaluating top-n queries. A common use case in

our application is to compute top-n queries for each demographic

breakdown, to determine the audience segment most engaged with

a given ad campaign. We hence evaluated the accuracy of results

from top-n queries for impressions with varying n. We computed

Jaccard distance, de�ned as 1 − |A ∩ B |/|A ∪ B |, where A is the set

of true top-n results and B is the set of noisy top-n results, for each

query, and averaged across all queries. Note that for any query with

fewer than n results, we return the same whole set with or without

adding noise so that Jaccard distance equals 0. About 50% of queries

in our dataset fall into this category. Hence, we focus on queries

with more than 10 values, to examine the accuracy of top-n results

from the noisy counts. As a result, the reported errors are larger

than what we would observe in practice.

Figure 4f shows the average Jaccard distance vs. n for ϵ =
0.1, 0.5, 1, 3. We observe that the average Jaccard distance roughly

varies between 0.1 and 0.5 depending on ϵ and n. As expected,

Jaccard distance becomes larger as ϵ gets smaller or equivalently

as noise with larger variance is added. We also observe that Jac-

card distance increases when n increases for larger values of ϵ , but

decreases with n for ϵ = 0.1.

6 LESSONS LEARNED IN PRACTICE
We next present the challenges encountered and the lessons learned

through the production deployment of our privacy-preserving an-

alytics computation system as part of the LinkedIn Ad Analytics

and Reporting platform for more than one year.

Business requirements and usability considerations. We

discuss how we took into account key business and usability fac-

tors when deploying the privacy-preserving mechanisms to the ad

analytics application.

Semantic consistency vs. unbiased, unrounded noise: Laplace mech-

anism for satisfying di�erential privacy involves noise drawn from

a continuous distribution with mean of zero, so that the expectation

of the noisy count would be the same as the true count. However,

without any post processing, the noisy counts could be negative,

while the users would expect to see cardinal numbers for counts.

Although it would be ideal to add unbiased (i.e., with mean of zero)

and unrounded noise to the true counts, we chose to round the

noise, and also cap the reported noisy count to be at least zero, to

avoid confusion for the end users.

Consistency vs. utility trade-o�: In the initial version, we com-

puted daily noisy counts as part of an o�ine work�ow and persisted

them to storage. We then aggregated these counts whenever the

analytics is requested over a multi-day range. This implementation

has advantages including simplicity of implementation, ease of de-

bugging and maintenance, and consistency. For instance, we could

retrieve the stored noisy count values for debugging any frontend

issues or investigating problems reported by users. The compu-

tation cost is one-time as part of the o�ine work�ow, instead of

incurring potential latency at query time. Also, the query results

would be consistent across di�erent time ranges. However, one

main disadvantage of this approach is that the variance of the noise

added increases with the time range, causing the noisy count to be

less reliable for queries over a longer time range such as one month

or one quarter. In our application, the users are typically interested

in the performance of their ad campaigns over its lifetime rather

than just on individual days. Given such usage behavior, we decided

to move to an online implementation, with a hierarchical approach

for time range queries (e.g., 3-hour epoch← day←month← quar-

ter← . . .), trading o� consistency for better utility. Further, the

analytics for the current day are also computed over completed,

discrete time epochs to prevent averaging attacks. For example,

assume that a day is broken into 3-hour epochs, the third epoch

(6am - 9am) statistics becomes available at 9:30am, and the fourth

epoch (9am - 12pm) statistics becomes available at 12:15pm. Then,

between 9:30am and 12:15pm, the current day analytics will make

use of only the �rst three epochs, and hence remain unchanged.

Suppression of small counts: The analytics and reporting appli-

cations at LinkedIn involve reporting of aggregate statistics over
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pre-determined and known sets of attribute values such as the set

of standardized titles, the set of companies, and the set of regions. In

other words, revealing the attribute value (e.g., “Research Scientist”)

as part of the reported analytics does not violate the privacy of a

member. This is in contrast to applications such as releasing search

queries [25], wherein the search query itself may be private, and

hence it is not desirable to reveal queries with small counts.

However, we chose to suppress small counts for the following rea-

son. The relative distortion due to the added noise will be large for

attribute values with small counts, and hence the reported counts

may not have su�cient validity for the purposes of observing pat-

terns and making inferences.

Online computation and performance requirements. The

implementation of the online pipeline to compute noisy analytics

on the �y imposes strict latency requirements. We did a few iter-

ations to optimize the noise computation code for performance.

For instance, we chose to implement the function, GeneratePseu-
dorandFrac in §3.1 following the approach of applying an e�cient

hash function and then scaling to (0, 1) range using optimized �oat-

ing point computations (e.g., using double instead of BigDecimal

type). These modi�cations helped reduce latency signi�cantly, re-

sulting in a responsive user experience when interacting with the

ads analytics web interface.

Scaling across analytics applications. We �rst developed

our system for preserving privacy in the context of the LinkedIn

Ad Analytics and Reporting platform. In the course of re�ning

our approaches to suit the privacy and product requirements, we

chose to design our system to be broadly applicable and scalable

across various analytics applications at LinkedIn. Consequently, we

abstracted the application-independent functionality into a stand-

alone library so that this library could be invoked as part of other

analytics applications. For example, the functions for generating

pseudorandom noise given query parameters are not speci�c to

any one application, and hence are included as part of this library.

7 RELATEDWORK
Privacy Techniques: Preserving user privacy is paramount when

computing and releasing answers to aggregate statistical queries

issued to a database containing sensitive user data. There is rich lit-

erature in the �eld of privacy-preserving data mining spanning dif-

ferent research communities (e.g., [2–4, 15, 21, 23, 27, 28, 31, 33, 34]),

as well as on the limitations of simple anonymization techniques

(e.g., [5, 30, 32]) and on privacy attacks and challenges in ad target-

ing [24]. Based on the lessons learned from the privacy literature,

we decided to make use of the rigorous notion of di�erential pri-

vacy [10, 11] in our problem setting. A key challenge we faced was

the fact that the analytics need to be provided on a continual basis

over time. Although the application of di�erential privacy under

continual observations has been studied theoretically [8, 12], we

have not come across any practical implementations or applications

of these techniques.

Privacy Systems in Practice: Several systems have been developed

in both academic and industrial settings to address the privacy

needs, especially focusing on regulations such as GDPR [22]. We

discuss a few systems that have been either implemented or de-

ployed in practice, and contrast them with our system. Aircloak’s

Di�x is a database anonymization system designed recently to ad-

dress GDPR requirements, allow a broad class of unlimited queries,

and provide answers to several statistical functions with minimal

distortion [17]. Although this system also makes use of determinis-

tic, pseudo-random noise as in our approach, there are a few key

di�erences. First, the queries issued in analytics application settings

at LinkedIn follow a speci�c type of syntax corresponding to the

product user interface and the exposed APIs, unlike the general

class of statistical queries Di�x attempts to answer. Consequently,

we could apply the rigorous notion of (event-level) di�erential pri-

vacy whereas Di�x does not have a formal treatment. In fact, it

has been recently shown that the noise used by Di�x leaks infor-

mation about the underlying data since the noise depends on the

set of records that match the query conditions [18]. Finally, our

system has been deployed as part of LinkedIn’s analytics platform

and our experiments are based on real world data, while simula-

tions are performed in Di�x [17]. FLEX is a system designed to

enforce di�erential privacy for SQL queries using elastic sensitiv-

ity, and has been adopted by Uber for internal data analytics [20].

The key focus in this work is on computing the sensitivity (elastic

sensitivity) for a broad class of SQL queries, whereas the queries

allowed by our system follow a speci�c form, and have sensitiv-

ity of 1. We also explored approaches similar to recent work at

Google [14, 16], Apple [1, 6, 19], and Microsoft [9] on privacy-

preserving data collection at scale that focuses on applications such

as learning statistics about how unwanted software is hijacking

users’ settings in Chrome browser, discovering the usage patterns

of a large number of iOS users for improving the touch keyboard,

and collecting application usage statistics in Windows devices re-

spectively. These approaches leverage local di�erential privacy,

building on techniques such as randomized response [36] and re-

quire response from typically hundreds of thousands of users for

the results to be useful. In contrast, even the larger of our reported

groups contain only a few thousand data points, and hence these

approaches are not applicable in our setting.

8 CONCLUSIONS AND FUTUREWORK
We studied the problem of computing robust, reliable, privacy-

preserving analytics for web-scale applications. We presented the

design and architecture of PriPeARL, which powers analytics appli-

cations at LinkedIn including LinkedIn Ad Analytics and Reporting

platform. We highlighted unique challenges such as the simultane-

ous need for preserving member privacy, product coverage, utility,

and data consistency, and how we addressed them in our system

using mechanisms based on di�erential privacy. We presented the

empirical tradeo�s between privacy and utility needs over a web-

scale ad analytics dataset. We also discussed the design decisions

and tradeo�s while building our system, and the lessons learned

from more than one year of production deployment at LinkedIn.

Our framework should be of broad interest for designing privacy-

preserving analytics and reporting in other application settings.

A broad direction for future work would be to create a taxonomy

of web-scale analytics and reporting applications, and study the

applicability of di�erent privacy approaches (e.g., interactive query-

ing mechanisms vs. data perturbation and publishing methods) for

each class of applications in the taxonomy. Another direction would
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be to associate a notion of utility with the availability / correctness

of di�erent types of statistics, and to formulate as a utility max-

imization problem given constraints on the ‘privacy loss budget’

per user. For example, we could explore adding more noise (i.e.,

noise with larger variance) to impressions but less noise to clicks (or

conversions) since the number of impressions is at least an order of

magnitude larger than say, the number of clicks. Similarly, we could

explore adding more noise to broader time range sub-queries and

less noise to granular time range sub-queries towards maximizing

utility.
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